Regulation of minichromosome maintenance helicase activity by Cdc6.

نویسندگان

  • Jae-Ho Shin
  • Beatrice Grabowski
  • Rajesh Kasiviswanathan
  • Stephen D Bell
  • Zvi Kelman
چکیده

Genetic studies, together with amino acid and structural similarities to the clamp loaders of DNA polymerase sliding clamps, have suggested that the Cdc6 protein may function as a loader for the eukaryotic replicative helicase, the minichromosome maintenance (MCM) complex. Thus, Cdc6 may act as the functional homologue of the bacterial DnaC that utilizes ATP hydrolysis to assemble the DnaB helicase at the origin. This report shows that the helicase activity of an MCM homologue from the archaeon Methanothermobacter thermautotrophicus is inhibited in the presence of the Cdc6 homologues. This inhibitory activity is dependent, as for DnaC, on ATP binding to Cdc6. Moreover, an intact Cdc6 winged helix domain is required for efficient inhibition. Two-hybrid analyses indicated that MCM and Cdc6 interact and that the interaction is mediated by the winged helix domain. Analysis of Cdc6 and MCM homologues from several archaea exhibited differences in the inhibitory activity suggesting divergence in function in Cdc6 and MCM homologues among the archaea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA binding by the Methanothermobacter thermautotrophicus Cdc6 protein is inhibited by the minichromosome maintenance helicase.

The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind double-stranded DNA. It is shown here that the proteins also bind single-stranded DNA. Using minichromosome maintenance (MCM) helicase mutant proteins unable to bind DNA, it was found that the interaction of MCM with Cdc6 inhibits the DNA binding activity of Cdc6.

متن کامل

The Methanothermobacter thermautotrophicus Cdc6-2 protein, the putative helicase loader, dissociates the minichromosome maintenance helicase.

The Cdc6-1 and -2 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind the minichromosome maintenance (MCM) helicase. It is shown here that Cdc6-2 protein dissociates the MCM complex. This observation supports the hypothesis that the Cdc6-2 protein functions as a helicase loader.

متن کامل

Thermoplasma acidophilum Cdc6 protein stimulates MCM helicase activity by regulating its ATPase activity

The minichromosome maintenance (MCM) proteins are thought to function as the replicative helicases in archaea. In most archaeal species studied, the interaction between MCM and the initiator protein, Cdc6, inhibits helicase activity. To date, the only exception is the helicase and Cdc6 proteins from the archaeon Thermoplasma acidophilum. It was previously shown that when the Cdc6 protein intera...

متن کامل

Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function.

Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2-7 (minichromosome maintenance proteins 2-7) double hexamer. During S phase, each Mcm2-7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC-Cdc6 funct...

متن کامل

Stimulation of MCM helicase activity by a Cdc6 protein in the archaeon Thermoplasma acidophilum

Replicative DNA helicases are ring-shaped hexamers that play an essential role in chromosomal DNA replication. They unwind the two strands of the duplex DNA and provide the single-stranded (ss) DNA substrate for the polymerase. The minichromosome maintenance (MCM) proteins are thought to function as the replicative helicases in eukarya and archaea. The proteins of only a few archaeal organisms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 39  شماره 

صفحات  -

تاریخ انتشار 2003